Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.

نویسندگان

  • S W Robertson
  • V Imbeni
  • H-R Wenk
  • R O Ritchie
چکیده

The superelastic/shape-memory material, Nitinol, an approximately equiatomic alloy of Ni and Ti, is rapidly becoming one of the most important metallic implant materials in the biomedical industry, in particular for the manufacture of endovascular stents. As such stents are invariably laser-machined from Nitinol tubes or sheets rolled into tubes, it is important to fully understand the physical phenomena that may affect the mechanical behavior of this material. With tubing and plate, one major issue is crystallographic texture, which can play a key role in influencing the mechanical properties of Nitinol. In this article, we present a study on how geometry and heat treatment can affect the texture of Nitinol, with specific quantification of the texture of Nitinol tube used for the production of endovascular stents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel

Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...

متن کامل

Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol

The superelastic material Nitinol, a nearly equiatomic alloy of nickel and titanium, is rapidly becoming one of the most important metallic implant materials in the biomedical industry, especially for the fabrication of endovascular stents. The manufacture of these stents, and countless other Nitinol products, originates from various forms of raw material such as tube, sheet or rod. However, de...

متن کامل

Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.

Improving the design and performance of medical stents for implantation in the human body is of current interest. This paper describes a study of fatigue-crack propagation behavior in the superelastic alloy Nitinol. Specifically, the objective of this work was to study the effect of environment on cyclic crack-growth resistance in an approximately 50Ni-50Ti (atom %) alloy and to provide the nec...

متن کامل

Thermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model

Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...

متن کامل

An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading

Constitutive laws for shape-memory alloys subjected to multiaxial loading, which are based on direct experimental observations, are generally not available in the literature. Accordingly, in the present work, tension–torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic/shape-memory alloy Nitinol using various loading/unloading pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2005